Giải bài 1, 2, 3, 4, 5, 6, 7, 8 trang 62, 63 SGK Đại số 10: Phương trình quy về phương trình bậc nhất, bậc hai
Bài 1. (SGK Đại số 10 trang 62)
Giải bài 1:
a) ĐKXĐ:
2x + 3 ≠0 ⇔ x ≠-3/2.
Quy đồng mẫu thức rồi khử mẫu thức chung thì được
4(x2 + 3x + 2) = (2x – 5)(2x + 3) => 12x + 8 = – 4x – 15
=> x = -23/16 (nhận).
b) ĐKXĐ: x ≠± 3. Quy đồng mẫu thức rồi khử mẫu thì được
(2x + 3)(x + 3) – 4(x – 3) = 24 + 2(x2 – 9)
=> 5x = -15 => x = -3 (loại). Phương trình vô nghiệm.
c) Bình phương hai vế thì được: 3x – 5 = 9 => x = 14/3 (nhận).
d) Bình phương hai vế thì được: 2x + 5 = 4 => x = – 1/2.
Bài 2. (SGK Đại số 10 trang 62)
Giải và biện luận các phương trình sau theo tham số m
a) m(x – 2) = 3x + 1;
b) m2x + 6 = 4x + 3m;
c) (2m + 1)x – 2m = 3x – 2.
Giải bài 2:
a) ⇔ (m – 3)x = 2m + 1.
b) ⇔ (m2 – 4)x = 3m – 6.
c) ⇔ 2(m – 1)x = 2(m – 1).
Giải bài tập Toán 10 Bài 3. (SGK Đại số 10 trang 62)
Có hai rổ quýt chứa số quýt bằng nhau. Nếu lấy 30 quả ở rổ thứ nhất đưa sang rổ thứ hai thì số quả ở rổ thứ hai bằng 1/3 của bình phương số quả còn lại ở rổ thứ nhất. Hỏi số quả quýt ở mỗi rổ lúc ban đầu là bao nhiêu?
Giải bài 3:
Gọi x là số quýt chứa trong một rổ lúc đầu. Điều kiện x nguyên, x > 30. Ta có phương trình 1/3(x – 30)2 = x + 30 ⇔ x2 – 3x + 810 = 0 ⇔ x = 45 (nhận), x = 18 (loại).
Trả lời: Số quýt ở mỗi rổ lúc đầu: 45 quả.
Bài 4. (SGK Đại số 10 trang 62)
Giải các phương trình
a) 2×4 – 7×2 + 5 = 0;
b) 3×4 + 2×2 – 1 = 0.
Giải bài 4:
a) Đặt x2 = t ≥ 0 ta được 2t2 – 7t + 5 = 0, t ≥ 0
2t2 – 7t + 5 = 0 ⇔ t1 = 1 (nhận), t2 = 5/2 (nhận).
Suy ra nghiệm của phương trình ẩn x là x1,2 = ±1, x3,4 = ±√10/2.
b) Đặt x2 = t ≥ 0 thì được 3t2 + 2t – 1 = 0 ⇔ t1 = -1 (loại), t2 = 1/3 (nhận).
Suy ra nghiệm của phương trình ẩn x là x1,2 = ±√3/3
Bài 5. (SGK Đại số 10 trang 62)
Giải các phương trình sau bằng máy tính bỏ túi (làm tròn kết quả đến chữ số thập phân thứ ba)
a) 2×2 – 5x + 4 = 0;
b) -3×2 + 4x + 2 = 0;
c) 3×2 + 7x + 4 = 0;
d) 9×2 – 6x – 4 = 0.
Giải bài 5:
Bài 6. (SGK Đại số 10 trang 62)
Giải các phương trình.
a) |3x – 2| = 2x + 3;
b) |2x -1| = |-5x – 2|;
c) (x – 1)/(2x – 3) = (-3x + 1)/(|x + 1|)
d) |2x + 5| = x2 + 5x + 1.
Giải bài 6:
a) ĐKXĐ: 2x + 3 ≥ 0. Bình phương hai vế thì được:
(3x – 2)2 = (2x + 3)2 => (3x – 2)2 – (2x + 3)2 = 0
⇔ (3x – 2 + 2x + 3)(3x – 2 – 2x – 3) = 0
=> x1 = -1/5 (nhận), x2 = 5 (nhận)
Tập nghiệm S = {-1/5; 5}.
b) Bình phương hai vế:
(2x – 1)2 = (5x + 2)2 => (2x – 1 + 5x + 2)(2x – 1 – 5x – 2) = 0
=> x1 = -1/7, x2 = -1.
c) ĐKXĐ: x ≠3/2, x ≠-1. Quy đồng rồi khử mẫu thức chung
(x – 1)|x + 1| = (2x – 3)(-3x + 1)
Kết luận: Tập nghiệm S = {(11 – √65)/14; (11 + √65)/14}
d) ĐKXĐ: x2 + 5x + 1 > 0
Kết luận: Tập nghiệm S = {1; -6}.
Bài 7. (SGK Đại số 10 trang 62)
Giải bài 7:
a) ĐKXĐ: x – 6 ≥ 0 ⇔ x > 6. Bình phương hai vế thì được 5x + 6 = (x – 6)2 ⇔ x1 = 2 (loại), x2 = 15 (nhận).
b) ĐKXĐ: – 2 ≤ x ≤ 3. Bình phương hai vế thì được 3 – x = x + 3 + 2√(x + 2) ⇔ -2x = 2√(x + 2).
Điều kiện x ≤ 0. Bình phương tiếp ta được: x2 = x + 2 => x1 = -1 (nhận); x2 = 2 (loại).
Kết luận: Tập nghiệm S {-1}.
c) ĐKXĐ: x ≥ -2.
=> 2×2 + 5 = (x + 2)2 => x2 – 4x + 1 = 0
=> x1 =2 – √3 (nhận), x2 = 2 + √3 (nhận).
d) ĐK: x ≥ -1/3.
=> 4×2 + 2x + 10 = (3x + 1)2 => x1 = -9/5 (loại), x2 = 1 (nhận).
Bài 8. (SGK Đại số 10 trang 63)
Cho phương trình 3×2 – 2(m + 1)x + 3m – 5 = 0.
Xác định m để phương trình có một nghiệm gấp ba nghiệm kia. Tính các nghiệm trong trường hợp đó.
Giải bài 8:
Giả sử phương trình có hai nghiệm x1 và x2 với x2 = 3×1. Theo định lí Viet ta có:
x1 + x2 = 4 x1 = [2(m + 1)]/3 => x1 = (m + 1)/6.
Thay x1 = (m + 1)/6 vào phương trình ta được 3[(m + 1)/6]2 – 2(m + 1).(m + 1)/6 + 3m – 5 = 0
⇔ -3m2 + 30m – 63 = 0 ⇔ m1 =3, m2 =7.
Thay m = 3 vào phương trình ta thấy pt có hai nghiệm x1 = 2/3; x2 = 2.
Với m = 7 ta có hai nghiệm x1 = 4/3; x2 = 4.